A study on the influence of a silicon group on the Curtius reaction

Rekha Verma and Sunil K. Ghosh *
Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

Abstract

The effect of a dimethyl(phenyl)silyl group at different positions with respect to an acyl azide moiety on the Curtius reaction has been investigated. A silyl group at the β-position enhanced the reaction rate by about three times compared to a non-silylated analog. However, a silyl group at the γ-position had only a minor influence on the reaction. A diacyl azide having a silyl group at the β-position with respect to one acyl azide group and at the γ-position with respect to the other acyl azide group has been prepared and subjected to the Curtius reaction in order to evaluate the possible synthetic potential which originates from the control exerted by the silicon group in such systems.

Introduction

The stabilization of an electron deficient centre such as a carbocation or a carboradical at the β-position (β-effect) ${ }^{1}$ with respect to a silicon group is the central theme of organosilicon chemistry applied to organic synthesis. This is clearly demonstrated by the enhanced rates of unimolecular solvolysis ${ }^{2}$ of β-(trimethylsilyl) esters compared to the corresponding siliconfree analogues. The regio- and stereo-selectivity of electrophilic substitution reactions of allyl-, vinyl- ${ }^{3}$ and aryl-silanes ${ }^{4}$ have been shown to be controlled by the β-effect. This stabilizing effect also plays an important role in directing the regioselectivity in various organic reactions. Some recent examples include Baeyer-Villiger oxidation, ${ }^{5}$ Bamford-Stevens reaction, ${ }^{6}$ Beckmann fragmentation, ${ }^{7}$ Norrish type I and II cleavages, ${ }^{8}$ palladium-catalysed nucleophilic substitution, ${ }^{9}$ Nazarov cyclizations, ${ }^{10,11}$ decarboxylation reactions ${ }^{12}$ and stereospecific $1,2-$ silyl shifts. ${ }^{13}$ The stabilization of an electron deficient centre at the γ-position with respect to a silicon group (γ-effect) does not appear to be as prevalent as the β-effect. Nevertheless, the existence of the γ-effect ${ }^{14}$ has been exemplified by the solvolysis of γ-silyl-substituted compounds. ${ }^{15}$ There are also a few examples where the γ-effect has been successfully used in organic synthesis such as reactions of homoallylsilanes, ${ }^{16}$ the Nef reaction ${ }^{17}$ and the oxidative fragmentation of γ-hydroxysilanes. ${ }^{18}$ The effect of a silicon group beyond the γ-position is rarely observed. This is evidently due to the fact that the 'functional groups are too far away to have an effect on one anotherr. ${ }^{19}$

The Curtius reaction ${ }^{20}$ involves a unimolecular rearrangement ${ }^{21}$ of acyl azides $\left(\mathrm{RCON}_{3}\right)$ to isocyanates (RNCO) with retention of configuration ${ }^{22}$ at the migrating group. This reaction has been successfully applied in many useful synthetic transformations for the generation of a primary amine functionality from a carboxylic acid with one fewer carbon atom, and it has also been used in the synthesis of many complex frameworks for natural product syntheses. ${ }^{23,24}$ As a part of our ongoing programme on the use of silicon directed reactions in organic synthesis, ${ }^{24}$ we were interested in studying the effect of a silicon group at different positions with respect to the acyl azide group on this rearrangement reaction. To the best of our knowledge, the effect of a silicon group on the Curtius reaction is not well known. The work describes a systematic study of the effect of a silicon group at various positions.

The required silyl-substituted acyl azides were prepared and the kinetic studies were performed to quantify the rate of the reaction. Similarly, a 1,4-diacyl azide was prepared in which the silicon group was at the β-position with respect to one acyl azide group and at the γ-position with respect to the other. The influence of their relative positions vis-a-vis the silicon group was also investigated.

Results and discussion

The acyl azides 5a,b having a dimethyl(phenyl)silyl group ($\mathrm{PhMe}_{2} \mathrm{Si}$) at the β - and γ-positions respectively were prepared from the corresponding acid hydrazides $\mathbf{4 a}, \mathbf{b}$. The latter were obtained from the corresponding silyl esters $\mathbf{2 a}, \mathbf{b}$ by hydrazinolysis in methanol. Silyl cupration ${ }^{25}$ of ethyl cinnamate (1) provided the β-silyl ester $\mathbf{2 a}$ whereas the γ-silyl ester $\mathbf{2 b}$ was obtained from it by one carbon homologation via the α diazomethyl ketone 3 (Schemes 1 and 2). The corresponding

Scheme 1 Reagents and conditions: a, ($\mathrm{PhMe}_{2} \mathrm{Si}_{2} \mathrm{CuCNLi}_{2} ; \mathrm{b}, \mathrm{NaOH}$, $\mathrm{EtOH} ; \mathrm{c},(\mathrm{COCl})_{2}, \mathrm{DMF} ; \mathrm{d}, \mathrm{CH}_{2} \mathrm{~N}_{2}$; e, light

2a $n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ 2b $n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ 2c $n=1 ; \mathrm{R}=\mathrm{H}$ 2d $n=2 ; R=H$

4a $n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$
4b $n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ $4 \mathrm{~b} n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ 4c $n=1 ; \mathrm{R}=\mathrm{H}$ 4d $n=2 ; R=H$

5a $n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ 5b $n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$ 5c $n=1 ; \mathrm{R}=\mathrm{H}$ $5 \mathrm{c} n=1 ; \mathrm{R}=\mathrm{H}$

Scheme 2 Reagents and conditions: a, $\mathrm{NH}_{2} \mathrm{NH}_{2} ; \mathrm{b}, \mathrm{NaNO}_{2}, \mathrm{HCl}$
esters $\mathbf{2 c}$, \mathbf{d} without a dimethyl(phenyl)silyl group were readily available and were converted to the corresponding acyl azides $\mathbf{5 c}, \mathbf{d}$ via the acid hydrazides $\mathbf{4 c}, \mathbf{d}$ respectively. The preparation of diacyl azide $\mathbf{1 0}$ having a $\mathrm{PhMe}_{2} \mathrm{Si}$ group positioned β with respect to one acyl azide group and γ to the other, began with silyl cupration ${ }^{25}$ on the diester 6 . The cyclised β-keto ester 7 was obtained and was easily converted into the required diester $\mathbf{8}$. The diesters were transformed into the dihydrazide 9 followed by the formation of the required diacyl azide $\mathbf{1 0}$ (Scheme 3).
The acyl azides and the products of the Curtius reaction, viz the corresponding isocyanates, are known to be quite reactive. Moreover, their proportion may vary with respect to time and temperature giving rise to inherent difficulties in studying the kinetics. Therefore, both substrates and the products were not

6

Scheme 3 Reagents and conditions: a, $\left(\mathrm{PhMe}_{2} \mathrm{Si}_{2} \mathrm{CuCNLi}_{2} ; \mathrm{b}, \mathrm{KOH}\right.$, MeOH ; aq. $\mathrm{HCl} ; \mathrm{c}, \mathrm{CH}_{2} \mathrm{~N}_{2} ;$ d, $\mathrm{NH}_{2} \mathrm{NH}_{2}$; e, NaNO_{2}, aq. HCl
isolated as such, but rather 'frozen' by means of reacting them with benzylamine. Consequently, acyl azides and isocyanates yielded benzyl amide and urea derivatives respectively.

Thus, Curtius reaction of acyl azides (5a-d) provided the corresponding isocyanates which were reacted in situ with benzylamine in the presence of triethylamine and a catalytic amount of 4-dimethylaminopyridine (DMAP) to provide the urea derivatives 12a-d (Scheme 4). Acyl azides under identical


```
11a \(n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph} \quad\) 5a \(n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph} \quad\) 12a \(n=1 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}\)
11b \(n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph} \quad 5 \mathrm{~b} n=2 ; \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph} \quad 12 \mathrm{~b} n=2 ; \mathrm{R}=\mathrm{SiMe} 2 \mathrm{Ph}\)
11c \(n=1 \cdot R=H\)
11d \(n=2 ; \mathrm{R}=\mathrm{H}\)
c \(n=1 ; R=H\)
12c \(n=1 ; R=H\)
12d \(n=2 ; \mathrm{R}=\mathrm{H}\)
```

Scheme 4 Reagents and conditions: $\mathrm{a}, \mathrm{BnNH}_{2}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$; b, room temp., 36 h
conditions gave the corresponding benzylamides 11a-d. Similarly, the diacyl azide $\mathbf{1 0}$ and the corresponding diisocyanate provided dibenzyl amide 13 and diurea 14 respectively. An incomplete Curtius reaction of diacyl azide $\mathbf{1 0}$ provided, along with dibenzylamide 13 and the diurea derivative 14, a mixture of mono-benzylamides $\mathbf{1 5}$ and $\mathbf{1 6}$ formed from the corresponding mono-isocyanate intermediates (Scheme 5).

The acyl azides were prepared at $0^{\circ} \mathrm{C}$ and then brought to $26^{\circ} \mathrm{C}$ for kinetic experiments. Aliquots were taken at different intervals and quenched with excess of benzylamine at $0^{\circ} \mathrm{C}$ Each aliquot was then analysed by HPLC. The amount of amides 11a-d and urea derivatives 12a-d formed at different time intervals were assayed. The first order rate constants were then calculated from the slope of the plots: $\ln C\left(t_{0}\right) / C(t)$ vs $\left(t-t_{0}\right)$ where $C(t)$ is the concentration of the amides 11a-d at time t and $C\left(t_{0}\right)$ is the initial concentration. The rate constant values as shown in Table 1 clearly indicate that a β-silylsubstitution enhances the rate of the Curtius reaction by a factor of 3 whilst the enhancement for a γ-silyl-substitution is marginal.
The kinetic experiment for diacyl azide $\mathbf{1 0}$ was also carried out at $26^{\circ} \mathrm{C}$. The effect of the silyl group on the rate constants

Table 1 Rate constants of the Curtius reaction of acyl azides 5a-d at $26^{\circ} \mathrm{C}$

Scheme 5 Reagents and conditions: a, $\mathrm{BnNH}_{2}, \mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}$; b, room temp., 36 h ; room temp., 3 h

Scheme 6
for the Curtius reaction of the β-acyl azide group and the γ-acyl azide group were obtained from the model shown in Scheme 6 where \mathbf{A} represents the diacyl azide, \mathbf{B} and \mathbf{C} are monoisocyanates and \mathbf{D} represents the diisocyanate derivative. The rate constants k_{1} and k_{2} were calculated assuming that the acyl azide group $\left(\mathrm{CON}_{3}\right)$ and the isocyanate group (NCO) at either the β - or γ-positions with respect to the silyl group have the same effect on the Curtius reaction of the other acyl azide group. In other words, the rate constants k_{1} for transformation from \mathbf{A} to \mathbf{B} and \mathbf{C} to \mathbf{D} are equal. Similarly, the rate constants k_{2} for the transformation from \mathbf{A} to \mathbf{C} and \mathbf{B} to \mathbf{D} are equal. The rate constants k_{1} and k_{2} were then found from the slopes of the plots: $\ln \left\{\left[A\left(t_{0}\right)+B\left(t_{0}\right)\right] /[A(t)+B(t)]\right\}$ and $\ln \left\{\left[A\left(t_{0}\right)+C\left(t_{0}\right)\right] /\right.$ $[A(t)+C(t)]\}$ vs. $\left(t-t_{0}\right)$ (for details of the derivation, see the appendix). The rate constant for the acyl azide group β to the dimethyl(phenyl)silyl group $\left(k_{1}\right)$ was found to be 4.54×10^{-3} $\min ^{-1}\left(t_{1 / 2} 153 \mathrm{~min}\right)$ whilst for the acyl azide group γ to the dimethyl(phenyl)silyl group (k_{2}) was found to be 2.02×10^{-3} $\min ^{-1}\left(t_{1 / 2} 344 \mathrm{~min}\right)$.

Conclusions

The present investigation brought to light the fact that a silicon group situated at the β-position with respect to an acyl azide group enhances the rate of the Curtius reaction by about 3 times whilst a γ-silyl substitution has a marginal influence (rate enhancement by about 1.2 times). This lends support to the proposition that during the concerted intramolecular rearrangement of an acyl azide to an isocyanate, an electron deficient centre at the migration origin is created. The β-silicon
substitution could be useful for the regioselective preparation of isocyanates from diacyl azides. This fact, along with the power of stereochemical control ${ }^{26}$ by a silicon group, has potential in organic synthesis.

Experimental

All mps were recorded with a Fisher-Johns apparatus. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian (model EM360) 60 MHz , a Bruker (model AC200) 200 MHz or a Varian (model VXR300) 300 MHz instrument. ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) are given in ppm downfield from internal tetramethylsilane ($\delta=0.00$) or from residual chloroform ($\delta=7.26$) and J (coupling constant) values in Hz . The IR spectra were recorded on a Perkin-Elmer 783 spectrophotometer. Mass spectra were recorded on a Shimadzu GCMS-QP 1000A instrument. HPLC analysis was performed on a Bruker instrument equipped with a RP-18 column and a UV monitor. Air sensitive reactions were carried out under an $\mathrm{Ar} / \mathrm{N}_{2}$ atmosphere. Solvents were freshly dried and distilled prior to use. Ether refers to diethyl ether.

Kinetic experiments were performed at $26 \pm 0.2^{\circ} \mathrm{C}$. The acyl azides in chloroform solution were prepared at $0^{\circ} \mathrm{C}$ and then transferred to the $26^{\circ} \mathrm{C}$ thermostat. Aliquots were taken at different intervals over 2-3 half lives, quenched with an excess of benzylamine in the presence of triethylamine and a catalytic amount of DMAP at $0^{\circ} \mathrm{C}$, and then left under those conditions overnight. Each aliquot was diluted with ethyl acetate and washed with dilute hydrochloric acid followed by brine Samples were then analysed by an HPLC fitted with a UV monitor fixed at $\lambda_{\text {max }} 254 \mathrm{~nm}$ and a LiChrospher® 100 RP -18 (5 $\mu \mathrm{m})$ column using acetonitrile-water or acetonitrile-waterTHF as mobile phase. The amount of amides and ureas were quantified from the respective peak areas. The mixture of mono-benzyl amides $\mathbf{1 5}$ and $\mathbf{1 6}$ was not separable by normal column chromatography. We have assumed that the extinction coefficients (ε values) for both are the same.

Diethyl hex-2-enedioate 6

Diethyl ethoxycarbonylmethylphosphonate ($7 \mathrm{~cm}^{3}, 35 \mathrm{mmol}$) was added dropwise to a stirred oil-free suspension of sodium hydride (50% in oil) ($1.75 \mathrm{~g}, 35 \mathrm{mmol}$) in dry THF $\left(90 \mathrm{~cm}^{3}\right)$ under nitrogen at room temperature. The mixture was stirred at room temperature for 2 h , cooled on an ice-water bath and a solution of ethyl 3-oxopropanoate ($3.9 \mathrm{~g}, 30 \mathrm{mmol}$) in THF (35 cm^{3}) was added. After 3 h at room temperature, the reaction mixture was poured into water and extracted with ether (400 cm^{3}). The organic extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right)$ to give $6(5.9 \mathrm{~g}, 98 \%) ; R_{\mathrm{f}}$ $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.90: 10\right) 0.5 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1720$, $1640,1250,1080 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{t}, J 7), 1.28$ $(3 \mathrm{H}, \mathrm{t}, J 7), 2.30-2.60(4 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{q}, J 7), 4.17(2 \mathrm{H}, \mathrm{q}$, $J 7$), $5.84(1 \mathrm{H}, \mathrm{dt}, J 15.6,1.6), 6.94(1 \mathrm{H}, \mathrm{dt}, J 15.6,6.4)$.

(2RS,3SR) 3-[Dimethyl(phenyl)silyl]-2-ethoxycarbonylcyclo-

 pentanone 7Dimethyl(phenyl)silyllithium ${ }^{27}\left(150 \mathrm{~cm}^{3}\right.$ of a 0.6 m solution in THF; 90 mmol) was added to a stirred suspension of copper(I) cyanide ($4 \mathrm{~g}, 45 \mathrm{mmol}$) in THF $\left(75 \mathrm{~cm}^{3}\right)$ under argon at $0^{\circ} \mathrm{C}$. After 0.5 h , the solution was cooled to $-78^{\circ} \mathrm{C}$ and the diester 6 $(8 \mathrm{~g}, 40 \mathrm{mmol})$ was added. The mixture was stirred under these conditions for 3 h , quenched with saturated aqueous ammonium chloride and extracted with hexane $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was chromatographed (SiO_{2}, hexane-ethyl acetate 97:3) to give the cyclised β-keto ester $7(9.8 \mathrm{~g}, 85 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $90: 10) 0.56 ; \mathrm{mp} 38-42^{\circ} \mathrm{C} ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1760,1740$, 1260,$1110 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.50(6 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{t}, J 8)$, $2.00-3.10(6 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{q}, J 8), 7.30-7.90(5 \mathrm{H}, \mathrm{m})$
(Found: C, 66.0; H, 7.9\%. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}$, 7.6\%).

Dimethyl 3-[dimethyl(phenyl)silyl]hexanedioate 8

The β-keto ester 7 ($4.64 \mathrm{~g}, 16 \mathrm{mmol}$) was dissolved in 20% ethanolic KOH solution $\left(60 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 3.5 h . The mixture was concentrated under reduced pressure, acidified with dilute hydrochloric acid and extracted with ethyl acetate $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was esterified with ethereal diazomethane solution to give the diester 8 (3.74 g , $76 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.90: 10\right) 0.56 ; v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 1730,1250,1110 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.31(6 \mathrm{H}, \mathrm{s})$, $1.35-1.50(1 \mathrm{H}, \mathrm{m}), 1.50-1.65(1 \mathrm{H}, \mathrm{m}), 1.80-2.00(1 \mathrm{H}, \mathrm{m})$, 2.14-2.43(4 H, m), $3.58(3 \mathrm{H}, \mathrm{s}), 3.64(3 \mathrm{H}, \mathrm{s}), 7.34-7.52(5 \mathrm{H}$, $\mathrm{m}) ; \mathrm{m} / \mathrm{z}$ (EI) $308\left(\mathrm{M}^{+}, 1.5 \%\right), 293$ (3), 277 (4.6), 135 (100) (Found: C, $62.0 ; \mathrm{H}, 8.1 \% . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}, 62.3 ; \mathrm{H}$, 7.8\%).

Ethyl 3-[dimethyl(phenyl)silyl]-3-phenylpropionate 2a ${ }^{25 b}$
Procedure as described for 7 , yield: $92 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate 95:5) $0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1735,1250,1110 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.21(3 \mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}), 1.03(3 \mathrm{H}, \mathrm{t}, J 7), 2.55-2.88$ $(3 \mathrm{H}, \mathrm{m}), 3.90(2 \mathrm{H}, \mathrm{q}, J 7), 6.90-7.80(10 \mathrm{H}, \mathrm{m})$ (Found: C, 72.9; $\mathrm{H}, 8.0 \% \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ requires C, $73.0 ; \mathrm{H}, 7.7 \%$).

Methyl 4-[dimethyl(phenyl)silyl]-4-phenylbutanoate 2b

Sodium hydroxide ($1 \mathrm{~g}, 25 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{2 a}(936 \mathrm{mg}, 3 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature. After 10 h , the solvent was evaporated, the residue was acidified with cold dilute hydrochloric acid and extracted with ethyl acetate $\left(50 \mathrm{~cm}^{3}\right)$. The organic extract was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was dissolved in dry dichloromethane ($5 \mathrm{~cm}^{3}$) and DMF $\left(0.03 \mathrm{~cm}^{3}\right)$ was added followed by the addition of oxalyl chloride $\left(0.55 \mathrm{~cm}^{3}, 6 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 h and the solvent was evaporated under vacuum. The residue was dissolved in dry THF and an excess of an ethereal solution of diazomethane was added to it at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was left inside the refrigerator overnight and the solvent was evaporated. The residue was chromatographed (SiO_{2}, hexane-ethyl acetate $90: 10$) to give the diazomethyl ketone 3 ($710 \mathrm{mg}, 76 \%$); R_{f} (hexane-ethyl acetate $9: 1) 0.33 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2103,1641,1599,1249,1113 ;$ $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.22(3 \mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}), 2.6(1 \mathrm{H}, \mathrm{dd}$, $J 2.4,13.4), 2.74(1 \mathrm{H}, \mathrm{dd}, J 11.1,13.4), 2.87(1 \mathrm{H}, \mathrm{d}, J 2.4,11.1)$, $5.01(1 \mathrm{H}, \mathrm{s}), 6.92-7.42(10 \mathrm{H}, \mathrm{m})$. A solution of $3(500 \mathrm{mg}$, 1.62 mmol) in dry methanol ($20 \mathrm{~cm}^{3}$) was photolysed (medium pressure, Pyrex filter) in a reactor for 2 h . The solvent was evaporated to give ester 2b ($455 \mathrm{mg}, 90 \%$); R_{f} (hexane-ethyl acetate 95:5) $0.57 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1730,1240,1100 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.18(3 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}), 1.87-2.34(5 \mathrm{H}, \mathrm{m})$, $3.56(3 \mathrm{H}, \mathrm{s}), 6.80-7.40(10 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / z$ (EI) $312\left(\mathrm{M}^{+}, 2.7 \%\right)$, 297 (19.6), 281 (1.2), 135 (100) (Found: C, 72.9; H, 8.0\%. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ requires C, 73.0; $\mathrm{H}, 7.7 \%$).

Preparation of acid hydrazides: a general procedure

3-[Dimethyl(phenyl)silyl]-3-phenylpropionohydrazide 4a. The ester $\mathbf{2 a}(925 \mathrm{mg}, 3 \mathrm{mmol})$ was dissolved in methanol $\left(10 \mathrm{~cm}^{3}\right)$ and hydrazine hydrate ($2 \mathrm{~cm}^{3}$) was added. The solution was left at room temperature for 3 days or refluxed for 12 h under nitrogen. The solvent and excess hydrazine were evaporated under vacuum to give the acid hydrazide $\mathbf{4 a}(925 \mathrm{mg}, 100 \%$) which was used directly for the next reaction. Similarly, mono hydrazides $\mathbf{4 b} \mathbf{b} \mathbf{d}$ and dihydrazide $\mathbf{9}$ were prepared from the corresponding esters $\mathbf{2 b} \mathbf{d}$ and $\mathbf{8}$ respectively, following the above protocol with quantitative yields. For 4a: mp $57-62^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3450,3250,1650,1620,1510,1490,1450,1440$, 1250, 1110.

4-[Dimethyl(phenyl)silyl]-4-phenylbutanohydrazide 4b. $v_{\max }-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$ (br), 1650, 1500, 1460, 1430, 1250, 1120.
3-Phenylpropionohydrazide 4c. $\mathrm{Mp} 95-97^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3320, 3280, 3160, 1630, 1530, 1450.

4-Phenylbutanohydrazide 4d. Mp $77-78^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3290, 3180, 1650, 1635, 1525.

3-[Dimethyl(phenyl)silyl]hexanediodihydrazide 9. Mp 168$170{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280,1650,1620,1530,1250,1110$.

Preparation of acid azides: a general procedure

3-[Dimethyl(phenyl)silyl]-3-phenylpropionyl azide 5a. The acid hydrazide $\mathbf{4 a}(298 \mathrm{mg}, 0.926 \mathrm{mmol})$ was dissolved in DMF $\left(5 \mathrm{~cm}^{3}\right)$ containing aqueous hydrochloric acid ($4 \mathrm{~m}, 0.5 \mathrm{~cm}^{3}, 2$ $\mathrm{mmol})$, cooled to $-5^{\circ} \mathrm{C}$ and treated with a saturated solution of sodium nitrite ($70 \mathrm{mg}, 1 \mathrm{mmol}$) in water. Stirring was continued at $-5^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 10 min , diluted with ice water (50 $\left.\mathrm{cm}^{3}\right)$ and was extracted with cold $\left(0^{\circ} \mathrm{C}\right)$ ethanol-free chloroform $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The organic extract was washed with ice cold water and dried over anhydrous MgSO_{4} at $0^{\circ} \mathrm{C}$.
Similarly, monoacyl azides $\mathbf{5 b} \mathbf{- d}$ were prepared from the corresponding mono hydrazides $\mathbf{4 b} \mathbf{b}$ d following the above protocol. For the preparation of the diacyl azide $\mathbf{1 0}$ aq. hydrochloric acid (4 equiv.) and sodium nitrite (2 equiv.) were used.

Preparation of benzylamides: a general procedure

N-Phenylmethyl-3-[dimethyl(phenyl)silyl]-3-phenylpropion-
amide 11a. A solution of acyl azide 5 a in chloroform ($20 \mathrm{~cm}^{3}$) [prepared from $298 \mathrm{mg}(1 \mathrm{mmol})$ of acid hydrazide 4a] was treated with benzylamine ($0.33 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$), triethylamine $\left(0.28 \mathrm{~cm}^{3}, 2 \mathrm{mmol}\right)$ and DMAP ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 12 h , the mixture was allowed to attain room temperature. The reaction mixture was washed with dilute hydrochloric acid and brine, dried over MgSO_{4} and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, $99: 1$) to give 11a ($345 \mathrm{mg}, 90 \%$). Similarly other benzylamides 11b-d were prepared. For diacyl azide 10, benzylamine (6 molar equiv.), triethylamine (4 molar equiv.) and DMAP (0.4 molar equiv.) were used instead. For 11a: R_{f} (hexane-ethyl acetate $80: 20) 0.44 ; \mathrm{mp} 125-128^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3220$, $1620,1540,1250,1110 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.20(6 \mathrm{H}, \mathrm{s}), 2.40-$ $3.10(3 \mathrm{H}, \mathrm{m}), 4.2(2 \mathrm{H}, \mathrm{d}, J 6), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.80-7.40(15 \mathrm{H}$, $\mathrm{m}) ; \mathrm{m} / z(\mathrm{EI}) 373\left(\mathrm{M}^{+}, 19.5 \%\right), 358$ (2), 135 (100), 91 (34.8) (Found: C, 77.0 ; H, 7.4; N, 3.6\%. $\mathrm{C}_{24} \mathrm{H}_{27}$ NOSi requires C, 77.2 ; H, 7.3; N, 3.8\%).
N-Phenylmethyl-4-[dimethyl(phenyl)silyl]-4-phenylbutan-
amide 11b. Yield $87 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate $85: 15$) 0.37 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3260,1700,1640,1530,1250,1110 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.18(3 \mathrm{H}, \mathrm{s}), 0.20(3 \mathrm{H}, \mathrm{s}), 1.70-2.30(5 \mathrm{H}, \mathrm{m}), 4.30$ ($2 \mathrm{H}, \mathrm{d}, J 6$), $5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.70-7.50(15 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}$ (EI) 387 ($\mathrm{M}^{+}, 1 \%$), 372 (2.2), 310 (2), 283 (47.8), 192 (97.8), 135 (100), 91 (69.5) (Found: C, 77.2; H, 7.6; N, 3.4\%. $\mathrm{C}_{25} \mathrm{H}_{29}$ NOSi requires C, 77.5; H, 7.5; N, 3.6\%).
N-Phenylmethyl-3-phenylpropionamide 11c. Yield $88 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate $80: 20) 0.36 ; \mathrm{mp} 84^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3300,1640,1550 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.45(2 \mathrm{H}, \mathrm{t}, J 8), 3.00$ $(2 \mathrm{H}, \mathrm{t}, J 8), 4.35(2 \mathrm{H}, \mathrm{d}, J 6), 6.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00-7.50$ ($10 \mathrm{H}, \mathrm{m}$).
N-Phenylmethyl-4-phenylbutanamide 11d. Yield $89 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate $85: 15) 0.25 ; \mathrm{mp} 80-81^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3260,1650,1550 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.80-2.40(4 \mathrm{H}, \mathrm{m})$, $2.6(2 \mathrm{H}, \mathrm{t}, J$ 8), $4.35(2 \mathrm{H}, \mathrm{d}, J 6), 5.95(1 \mathrm{H}, \mathrm{br}$ s), $7.00-7.50$ ($10 \mathrm{H}, \mathrm{m}$).
N, N^{\prime}-Bis(phenylmethyl)-3-[dimethyl(phenyl)silyl]hexanedi-
amide 13. Yield $84 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate $70: 30$) 0.18 ; mp $90-93{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right.$ film $) / \mathrm{cm}^{-1} 3282,1640,1552,1256,1107$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.28(6 \mathrm{H}, \mathrm{s}), 1.38-1.44(1 \mathrm{H}, \mathrm{m}), 1.51-$ $1.62(1 \mathrm{H}, \mathrm{m}), 1.84-2.35(5 \mathrm{H}, \mathrm{m}), 4.25-4.39(4 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}$, $\mathrm{t}, J 5.2), 6.57(1 \mathrm{H}, \mathrm{t}, J 5.6), 7.10-7.45(15 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 458$ $\left(\mathrm{M}^{+}, 3.5 \%\right), 443$ (12.3), 381 (12), 310 (24.6), 232 (30.7), 217
(3.3), 135 (45.8), 91 (100) (Found: C, 73.0; H, 7.5; N, 6.0\%. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires C, $73.3 ; \mathrm{H}, 7.5 ; \mathrm{N}, 6.1 \%$).

Preparation of benzylurea derivatives: a general procedure
 N-\{2-[Dimethyl(phenyl)silyl]-2-phenylethyl $\}-N^{\prime}$-phenyl-

methylurea 12a. A solution of acyl azide $\mathbf{5 a}$ in chloroform (20 $\left.\mathrm{cm}^{3}\right)$ [prepared from $298 \mathrm{mg}(1 \mathrm{mmol})$ of acid hydrazide 4a] was left at room temperature (about $30^{\circ} \mathrm{C}$) for about 36 h , concentrated and treated with benzylamine ($0.33 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$), triethylamine ($0.28 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) and DMAP ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 12 h , the mixture was allowed to attain room temperature. The reaction mixture was washed with dilute hydrochloric acid and brine, dried over MgSO_{4} and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}-\mathrm{MeOH}, 97: 3\right)$ to give pure urea derivative 12a ($338 \mathrm{mg}, 87 \%$); for diacyl azide 10, benzylamine (6 molar equiv.), triethylamine (4 molar equiv.) and DMAP (0.4 molar equiv.) were used instead. 12a: R_{f} (hexane-ethyl acetate $70: 30$) $0.56 ; \mathrm{mp} 108^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340,1640,1590,1250,1110$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.25(6 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 5,12), 3.40-$ $3.80(2 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{d}, J 6), 4.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.50(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 6.80-7.50 ($15 \mathrm{H}, \mathrm{m}$); m/z (EI) 389 ($[\mathrm{M}+1]^{+}, 5.0 \%$), 373 (2.4), 135 (100), 91 (58.7) (Found: C, 73.9; H, 7.5; N, 7.0\%. $\mathrm{C}_{24} \mathrm{H}_{28}{ }^{-}$ $\mathrm{N}_{2} \mathrm{OSi}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 7.3 ; \mathrm{N}, 7.2 \%$).
N-\{2-[Dimethyl(phenyl)silyl]-2-phenylpropyl\}- N^{\prime}-phenylmethylurea 12b. Yield $90 \% ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 98: 2\right) 0.2 ; \mathrm{mp}$ $78^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right.$ film $) / \mathrm{cm}^{-1} 3320,3080,1640,1580,1250$, $1110 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.17(3 \mathrm{H}, \mathrm{s}), 0.20(3 \mathrm{H}, \mathrm{s}), 1.70-2.30$ $(3 \mathrm{H}, \mathrm{m}), 2.90-3.20(2 \mathrm{H}, \mathrm{m}), 4.20(2 \mathrm{H}, \mathrm{d}, J 6), 4.50(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, 6.90-7.40 ($15 \mathrm{H}, \mathrm{m}$); m/z (EI) 402 ($\mathrm{M}^{+}, 6.2 \%$), 387 (2.0), 312 (10), 135 (100), 91 (32.6) (Found: C, 74.3; H, 7.7; N, 6.8\%. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}$ requires C, $74.6 ; \mathrm{H}, 7.5 ; \mathrm{N}, 7.0 \%$).
\boldsymbol{N}-2-Phenylethyl- \boldsymbol{N}^{\prime}-phenylmethylurea 12c. Yield $84 \% ; R_{\mathrm{f}}$ (hexane-ethyl acetate $70: 30$) $0.32 ; \mathrm{mp} 95-97^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3350,3320,1630,1570,1490,1450 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.60$ $(2 \mathrm{H}, \mathrm{t}, J 6), 3.16(2 \mathrm{H}, \mathrm{t}, J 6), 4.10(2 \mathrm{H}, \mathrm{d}, J 6), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.90-7.40(10 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 254\left(\mathrm{M}^{+}, 41.3 \%\right)$, 163 (14.1), 106 (28.6), 91 (100).
\boldsymbol{N}-2-Phenylpropyl- \boldsymbol{N}^{\prime}-phenylmethylurea 12d. Yield $81 \% ; R_{\mathrm{f}}$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 98: 2\right) 0.14 ; \mathrm{mp} 98^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3310$, $3290,1625,1580,1450 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.7(2 \mathrm{H}$, quintet, $J 8), 2.60(2 \mathrm{H}, \mathrm{t}, J 8), 3.20(2 \mathrm{H}, \mathrm{q}, J 8), 4.25(2 \mathrm{H}, \mathrm{d}, J 6), 5.30$ $(1 \mathrm{H}, \mathrm{t}, J 5), 5.60(1 \mathrm{H}, \mathrm{t}, J 5), 7.00-7.50(10 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 268$ $\left(\mathrm{M}^{+}, 64 \%\right), 177$ (4), 149 (34.7), 119 (19.5), 106 (69.5), 91 (100), 77 (15.2).
N, N^{\prime}-Bis(phenylmethylaminocarbonyl)-2-[dimethyl(phenyl)-silyl]butane-1,4-diamine 14. Yield $82 \% ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ 95:5) $0.53 ; \mathrm{mp} 104-106^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3338,3065,1628$, $1569,1250,1107 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.24(6 \mathrm{H}, \mathrm{s}), 0.97-1.01$ $(1 \mathrm{H}, \mathrm{m}), 1.27-1.37(1 \mathrm{H}, \mathrm{m}), 1.50-1.65(1 \mathrm{H}, \mathrm{m}), 3.04-3.15$ $(3 \mathrm{H}, \mathrm{m}), 3.24-3.32(1 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{d}, J 6.7), 4.18(2 \mathrm{H}, \mathrm{d}$, $J 6.7), 5.43(1 \mathrm{H}, \mathrm{t}, J 5.6), 5.65(1 \mathrm{H}$, unresolved triplet), 5.74 $(1 \mathrm{H}, \mathrm{t}, J 5.8), 5.81(1 \mathrm{H}$, unresolved triplet), 7.17-7.45 (15 H , $\mathrm{m}) ; m / z$ (EI) $490\left(\mathrm{M}^{+}, 2.1 \%\right), 475$ (0.5), 341 (3.7), 327 (7.7), 135 (75), 106 (82), 91 (100) (Found: C, 68.8; H, 7.6; N, 11.3. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}$ requires C, $\left.68.8 ; \mathrm{H}, 7.4 ; \mathrm{N}, 11.5 \%\right)$.

Preparation of mono-benzylamide: a general procedure

N-Phenylmethyl-4-[dimethyl(phenyl)silyl]-5-(phenylmethyl-
aminocarbonylamino)pentanamide 15 and N-phenylmethyl-3-[dimethyl(phenyl)silyl]-5-(phenylmethylaminocarbonylamino)-
pentanamide 16. A solution of the diacyl azide 10 in chloroform [prepared from diacid dihydrazide 9 ($155 \mathrm{mg}, 0.5 \mathrm{mmol}$) following the general method] was left at room temperature $\left(\sim 30^{\circ} \mathrm{C}\right)$ for about 3 h , concentrated and treated with benzylamine (0.33 $\mathrm{cm}^{3}, 3 \mathrm{mmol}$), triethylamine ($0.28 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) and DMAP (25 $\mathrm{mg}, 0.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 12 h , the mixture was allowed to attain room temperature. The reaction mixture was washed with dilute hydrochloric acid and brine, dried over MgSO_{4} and evaporated under reduced pressure. The residue was chromato-
graphed $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}-\mathrm{MeOH}, 96: 4\right)$ to give a mixture of monoamides $\mathbf{1 5}$ and $\mathbf{1 6}$ (about $4: 1$ ratio) ($116 \mathrm{mg}, 50 \%$) and diamide $13(45 \mathrm{mg}, 20 \%)$ and diurea derivative 14 ($50 \mathrm{mg}, 20 \%$). For $\mathbf{1 5}$ and $\mathbf{1 6}$ mixture: R_{f} (hexane-ethyl acetate 1:1) 0.33 ; mp $95-97{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3308,3073,1634,1564,1450,1431$, 1251,$1111 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.27(6 \mathrm{H}, \mathrm{s}$, from 15$), 0.29$ ($6 \mathrm{H}, \mathrm{s}$, from 16), $0.85-1.05(1 \mathrm{H}, \mathrm{m}), 1.55-1.65(1 \mathrm{H}, \mathrm{m}), 1.70-$ $1.95(1 \mathrm{H}, \mathrm{m}), 2.15-2.40(2 \mathrm{H}, \mathrm{m}), 3.10-3.35(2 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}$, d, $J 5.8), 4.21(1 \mathrm{H}, \mathrm{dd}, J 5.6,15), 4.30(2 \mathrm{H}, \mathrm{dd}, J 5.2,15), 5.01$ ($1 \mathrm{H}, \mathrm{t}, J 5.8$, from 15), $5.11(1 \mathrm{H}, \mathrm{t}, J 5.3$, from 15$), 5.18(1 \mathrm{H}, \mathrm{t}$, $J 5.8$, from 16), $5.54(1 \mathrm{H}, \mathrm{t}, J 5.6$, from 16$), 6.38(1 \mathrm{H}, \mathrm{t}, J 5.6$, from 16), $6.72(1 \mathrm{H}, \mathrm{t}, J 5.6$, from 15) $7.13-7.47(15 \mathrm{H}, \mathrm{m}) ; ~ m / z$ (EI) $475\left(\mathrm{M}^{+}, 3.5 \%\right), 3.40$ (5.6), 326 (19.2), 135 (64), 91 (100) (Found: C, 69.8; H, 7.7; N, 8.5\%. $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$ requires C, $71.0 ; \mathrm{H}, 7.5 ; \mathrm{N}, 8.9 \%$).

Appendix

Considering the sequence of reactions as depicted in Scheme 6, the rate equations can be expressed as eqns. (1)-(4), where $A(t)$,

$$
\begin{array}{r}
-\mathrm{d} A(t) / \mathrm{d} t=\left(k_{1}+k_{2}\right) A(t) \\
\mathrm{d} B(t) / \mathrm{d} t=k_{1} A(t)-k_{2} B(t) \\
\mathrm{d} C(t) / \mathrm{d} t=k_{2} A(t)-k_{1} C(t) \\
\mathrm{d} D(t) / \mathrm{d} t=k_{2} B(t)+k_{1} C(t) \tag{4}
\end{array}
$$

$B(t), C(t)$ and $D(t)$ are the concentrations of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D at time t respectively.

The solution of eqn. (1) is eqn (5), where $A\left(t_{0}\right)$ represents the initial concentration at time t_{0} where $t_{0} \neq 0$.

$$
\begin{equation*}
A(t)=A\left(t_{0}\right) \exp \left[-\left(k_{1}+k_{2}\right)\left(t-t_{0}\right)\right] \tag{5}
\end{equation*}
$$

Consider eqn. (6). Manipulation of eqn. (2) and eqn. (6) leads to eqn. (7), where $A^{\prime}\left(t_{0}\right)=A\left(t_{0}\right) \exp \left[\left(k_{1}+k_{2}\right) t_{0}\right]$.

$$
\begin{equation*}
B(t)=\exp \left(-k_{2} t\right) f B(t) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{d} f B(t) / \mathrm{d} t=k_{1} A^{\prime}\left(t_{0}\right) \exp \left(-k_{1} t\right) \tag{7}
\end{equation*}
$$

On integration of eqn. (7), eqn. (8) is obtained. Combination

$$
\begin{equation*}
f B(t)-f B\left(t_{0}\right)=A^{\prime}\left(t_{0}\right)\left[\exp \left(-k_{1} t_{0}\right)-\exp \left(-k_{1} t\right)\right] \tag{8}
\end{equation*}
$$

followed by rearrangement of eqns. (8) and (6) gives eqn. (9). Similarly, one can obtain eqn. (10).

$$
\begin{align*}
& B(t)=B\left(t_{0}\right) \exp \left[-k_{2}\left(t-t_{0}\right)\right]+ \\
& A\left(t_{0}\right)\left\{\exp -\left[k_{2}\left(t-t_{0}\right)\right]-\exp -\left[\left(k_{1}+k_{2}\right)\left(t-t_{0}\right)\right]\right\} \\
& \quad \text { or } \ln \left[A\left(t_{0}\right)+B\left(t_{0}\right)\right] /[A(t)+B(t)]=k_{2}\left(t-t_{0}\right) \tag{9}\\
& \tag{10}\\
& \ln \left[A\left(t_{0}\right)+C\left(t_{0}\right)\right] /[A(t)+C(t)]=k_{1}\left(t-t_{0}\right)
\end{align*}
$$

Acknowledgements

We acknowledge Mr Alok Samanta, Chemistry Division, BARC for helpful discussions on the mathematical derivations.
D. L. Bailey, G. M. Goldberg, C. E. Buck, T. S. Bye, F. J. Evans and F. C. Whitmore, J. Am. Chem. Soc., 1954, 76, 1613; J. M. White, Aust. J. Chem., 1995, 48, 1227.
2 J. B. Lambert, Tetrahedron, 1990, 46, 2677.
3 I. Fleming, J. Dunogues and R. Smithers, Org. React., 1989, ch. 2.
4 D. Habich and F. Effenherger, Synthesis, 1979, 841.
5 P. F. Hudrlik, A. M. Hudrlik, T. Yimenu, M. A. Waugh and G. Nagendrappa, Tetrahedron, 1988, 44, 3791.

6 T. K. Sarkar and B. K. Ghorai, J. Chem. Soc., Chem. Commun., 1992, 1184.
7 (a) H. Nishiyama, K. Sakuta, N. Osaka, H. Arai, M. Matsumoto and K. Itoh, Tetrahedron, 1988, 44, 2413; (b) P. F. Hudrlik, M. A. Waugh and A. M. Hudrlik, J. Organomet. Chem., 1984, 271, 69.
8 (a) J. R Hwu, B. A. Gilbert, L. C. Lin and B. R. Liaw, J. Chem. Soc., Chem. Commun., 1990, 161; (b) J. R. Hwu, B.-L. Chen, L. W. Huang and T.-H. Yang, J. Chem. Soc., Chem. Commun., 1995, 299.

9 S. Thorimbert and M. Malacria, Tetrahedron Lett., 1996, 37, 8483.

10 S. E. Denmark, M. A. Wallace and C. B. Walker, Jr, J. Org. Chem., 1990, 55, 5543.
11 K.-T. Kang, S. S. Kim, J. C. Lee and S. U. Jong, Tetrahedron Lett., 1992, 33, 3495.
12 H. Nishiyama, M. Matsumoto, H. Arai, H. Sakaguchi and K. Itoh, Tetrahedron Lett., 1986, 27, 1599.
13 (a) I. Fleming and S. K. Ghosh, J. Chem. Soc., Chem. Commun., 1992, 1777; (b) I. Fleming and S. K. Ghosh, J. Chem. Soc., Chem. Coттип., 1994, 2285.
14 For the pioneering work on the γ-effect, see L. H. Sommer, G. M. Dorfman, G. M. Goldberg and F. C. Whitmore, J. Am. Chem. Soc., 1946, 68, 488.
15 (a) D. D. Davis and R. H. Black, J. Organomet. Chem., 1974, 82, C30; (b) V. J. Shiner, Jr., M. W. Ensinger and J. C. Huffman, J. Am. Chem. Soc., 1989, 111, 7199; (c) W. Krimse and F. Sollenbohmer, J. Am. Chem. Soc., 1989, 111, 4127; (d) C. A. Grob and P. Sawlewicz, Tetrahedron Lett., 1987, 28, 951.
16 (a) H. Sakurai, T. Imai and A. Hosomi, Tetrahedron Lett., 1977, 4025; (b) Y. Hatanaka and I. Kuwajima, Tetrahedron Lett., 1986, 27, 719.

17 J. R. Hwu and B. A. Gilbert, J. Am. Chem. Soc., 1991, 113, 5917.
18 S. R. Wilson, P. A. Zucker, C. W. Kim and C. A. Villa, Tetrahedron Lett., 1985, 26, 1969.
19 I. Fleming, in Comprehensive Organic Chemistry, ed. D. H. R. Barton and W. D. Ollis, Pergamon Press, 1979, vol. 3, p. 645.
20 T. Curtius, Ber., 1894, 27, 778.
21 M. S. Newman, S. H. Lee, Jr and A. B. Garrett, J. Am. Chem. Soc., 1947, 69, 113.
22 L. W. Jones and E. S. Wallis, J. Am. Chem. Soc., 1926, 48, 169.
23 (a) P. A. Jacobi, S. Murphree, F. Rupprecht and W. Zheng, J. Org. Chem., 1996, 61, 2413; (b) S. Achab, M. Guyot and P. Potier, Tetrahedron Lett., 1995, 36, 2615; (c) S. Vangveravong and D. E. Nichols. J. Org. Chem., 1995, 60, 3409; (d) A. B. Charette and B. Cote, J. Am. Chem. Soc., 1995, 117, 12 721; (e) T. Choshi, S. Yamada, E. Sugino, T. Kuwada and S. Hibino, J. Org. Chem., 1995, 60, 5899; (f) H. Toshima and A. Ochihara, Biosci. Biotechnol. Biochem., 1995, 59, 497; (g) R. W. Hoffmann and A. Schlapbach, Tetrahedron Lett., 1993, 34, 7903; (h) D. L. Boger, K. C. Cassidy and S. Nakahara, J. Am. Chem. Soc., 1993, 115, 10733.

24 R. Verma and S. K. Ghosh, Chem. Commun., 1997, 1601.
25 (a) I. Fleming, in Organocopper Reagents: A Practical Approach, ed. R. J. K. Taylor, OUP, Oxford, 1995, ch. 12, pp. 257-292; (b) R. A. N. C. Crump, I. Fleming, J. H. M. Hill, D. Parker, N. L. Reddy and D. Waterson, J. Chem. Soc., Perkin Trans. 1, 1992, 3277.
26 I. Fleming, A. Barbero and D. Walter, Chem. Rev., 1997, 97, 2063.

27 M. V. George, D. J. Peterson and H. Gilman, J. Am. Chem. Soc., 1960, 82, 403; see also, A. S. Guram and G. A. Krafft, in Encyclopedia of Reagents for Organic Synthesis, ed. L. A. Paquette, Wiley, Chichester, 1995, 3, 2113; I. Fleming, R. S. Roberts and S. C. Smith, Tetrahedron Lett., 1996, 37, 9395.

References

1 S. N. Ushakov and A. M. Itenberg, Zh. Obshch. Khim., 1937, 7, 2495 [Chem. Abstr., 1938, 32, 2083(8)]; see, also L. H. Sommer,

Paper 8/02615G
Received 6th April 1998 Accepted 4th June 1998

